合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 從哪些方面可以體現(xiàn)出酶特異性地結(jié)合某種物質(zhì)?
> 不同質(zhì)量濃度、pH、鹽度對三七根提取物水溶液表面張力的影響(三)
> 產(chǎn)低溫β-甘露聚糖酶的菌株O5提升低溫油藏壓裂液的破膠性能——結(jié)果與討論、結(jié)論
> 密封防拆射頻標簽的安裝時,需要考慮表面張力嗎?
> 氣體富集、雜質(zhì)對固-液界面納米氣泡接觸角的影響——引言、實驗儀器與試劑
> 硅基納米原位乳化減阻劑與原油的界面張力達到10-1mN/m數(shù)量級,提高原油采收率
> 什么叫熔體,表面張力對陶瓷熔體的作用機理
> 不同表面張力溫度系數(shù)對激光焊接熔池流場的影響
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應(yīng)條件及表面張力測定(二)
> 表面活性劑在除草劑噴霧助劑中應(yīng)用及主要增效機制
推薦新聞Info
-
> 高速運動的微小水滴撞擊深水液池產(chǎn)生的空腔運動及形成機理(二)
> 高速運動的微小水滴撞擊深水液池產(chǎn)生的空腔運動及形成機理(一)
> 玻璃窗上水滴的運動控制影響因素及模型構(gòu)建
> 勝利油田常規(guī)和親油性石油磺酸鹽組成、色譜、質(zhì)譜、界面張力測定(一)
> 三元復(fù)合體系的界面擴張黏彈性對水驅(qū)后殘余油的乳化作用——結(jié)論
> 三元復(fù)合體系的界面擴張黏彈性對水驅(qū)后殘余油的乳化作用——實驗材料及條件
> 新工藝提升葉黃素和玉米黃素聯(lián)產(chǎn)的塔式萃取效率
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關(guān)系(二)
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關(guān)系(一)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(二)
不同表面張力液體的多樣定向運輸模式,如何實現(xiàn)?
來源:高分子科學(xué)前沿 瀏覽 790 次 發(fā)布時間:2024-08-06
控制液體的定向運輸對于界面工程、微流控技術(shù)、強化傳熱和生化分析等具有重要意義?,F(xiàn)有技術(shù)能在無外部能量輸入條件下實現(xiàn)定向運輸液體,但修飾潤濕性梯度或結(jié)構(gòu)的表面對液體操控的驅(qū)動力常局限在一維方向,限制了液體的運輸只能在一維兩個方向內(nèi)調(diào)控,而無法實現(xiàn)多向可控運輸,在一定程度上制約了液體操控表面功能的進一步開發(fā)和應(yīng)用拓展。
為實現(xiàn)多向調(diào)控液體,香港理工大學(xué)王立秋教授團隊提出了由陣列式三維不對稱尖牙結(jié)構(gòu)單元組成的結(jié)構(gòu)化表面,為不同表面張力液體定制運輸方向,并呈現(xiàn)出五種新穎的運輸模式(圖1)。這種智能調(diào)控液體的能力源于所設(shè)計表面單元自下而上分布的多曲率特征,在三維空間上交替地主導(dǎo)液體表面的局部拉普拉斯壓差,從而原位控制不同潤濕性液體的多樣定向運輸模式。該表面根據(jù)液體特性實施多模式控制的能力使其具備傳統(tǒng)結(jié)構(gòu)化表面難以實現(xiàn)的創(chuàng)新功能,如構(gòu)建自適應(yīng)液體電路、便攜式表面張力指示器、智能調(diào)控液體及按需熱管理。該研究以“In Situ Multi-Directional Liquid Manipulation Enabled by 3D Asymmetric Fang-Structured Surface”為題發(fā)表于《Advanced Materials》,團隊博士生孫思琦為論文第一作者,王立秋講席教授為通訊作者,張藝媛研究助理教授為共同通訊作者。
圖1:結(jié)構(gòu)化表面上的多向液體運輸行為及潛在應(yīng)用。
視頻1:多向液體運輸行為及表面單元的多曲率結(jié)構(gòu)對液體定向運輸起主導(dǎo)作用的曲率特征。
原位多模態(tài)定向液體操控機制
注入結(jié)構(gòu)化表面的液體首先填充相鄰四個單元間的空隙,并在單元的特定曲率結(jié)構(gòu)處形成局部曲率不等的液體彎月面,這導(dǎo)致液體表面不同位置的拉普拉斯壓差不同,進而驅(qū)動液體定向運輸。隨表面張力從低到高(22-72 mN/m),液體呈現(xiàn)出五種不同的運輸模式(I至Ⅴ)。研究人員利用水-乙醇溶液對這五種模式下液體沿x軸和y軸方向上的運輸行為進行力學(xué)分析(圖2)。表面張力較低的液體對界面的潤濕性較高,因此主要在單元底部曲率結(jié)構(gòu)作用下,沿拉普拉斯壓差較低的方向運輸;而表面張力較高的液體會在結(jié)構(gòu)化表面上積累,其運輸方向由單元頂部曲率調(diào)控。
圖2:注入液體在表面上的多向運輸機制及拓展。
自適應(yīng)液體電路
結(jié)構(gòu)化表面可根據(jù)液體表面張力控制不同的運輸方向,從而僅用一塊表面即可構(gòu)建自適應(yīng)液體特性的多路徑電路,而無需組裝復(fù)雜的液體控制模塊。如圖3所示,通過使用特定表面張力的導(dǎo)電液體,能在該表面上選擇性點亮目標LED燈,從而簡化了復(fù)雜電路的構(gòu)建。
便攜式表面張力指示器
結(jié)構(gòu)化表面使不同表面張力的液體呈現(xiàn)肉眼可分的特定鋪展形態(tài)。因此,只需將液體用滴管注入結(jié)構(gòu)化表面,就可根據(jù)其鋪展方向推斷液體表面張力范圍,而無需使用任何昂貴的定量檢測儀器。研究人員開發(fā)出一系列有不同單元高度的結(jié)構(gòu)化表面來細化可識別的表面張力分區(qū),以提高指示精度(圖3)。
圖3:自適應(yīng)液體電路和便攜式表面張力指示。
智能液體調(diào)控實現(xiàn)按需熱管理
在熱交換應(yīng)用中,溫度導(dǎo)致的液體性質(zhì)變化是一個廣泛存在的現(xiàn)象,給傳統(tǒng)的液體操縱表面在高溫環(huán)境下的應(yīng)用帶來了挑戰(zhàn)。本研究提出的結(jié)構(gòu)化表面能在高溫環(huán)境下有效維持對液體的定向運輸。并在高溫導(dǎo)致的液體表面張力變化下,完成了在持續(xù)變溫表面上對液體運輸方向的智能調(diào)控,和在恒溫加熱表面上時空可控的靶向冷卻(圖4)。這種基于溫度調(diào)控液體性質(zhì)的智能液體運輸能力,為按需熱管理提供了新的解決方案。
圖4:高溫表面上的動態(tài)液體運輸控制和時空可控的靶向冷卻。