合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> LB法組裝Silicalite-1型分子篩晶粒層,制備出高度b-軸取向的ZSM-5分子篩膜
> 表面張力儀分析氣潤濕反轉(zhuǎn)劑對緩解煤層水鎖效應(yīng)、解吸速率影響(四)
> 油藏條件下CO_2乳液穩(wěn)定性實驗
> 基于表/界面張力儀研究不同材料在滲吸驅(qū)油中的應(yīng)用
> 影響表面活性劑泡沫封堵性能的原因有哪些
> 毛細(xì)現(xiàn)象:表面張力和接觸角兩者有什么關(guān)系?
> 雙鏈乳糖酰胺季銨鹽表面活性劑物化性能、應(yīng)用性能及復(fù)配性能研究
> ABA型聚醚改性有機(jī)硅表面活性劑在不同溶劑中的泡沫性能的相關(guān)性
> 基于天然植物油的酰胺胺氧化合物的合成表征及表面性質(zhì)——摘要、介紹
> 連接基對3種表面活性劑GSS271、GSS371和GSS471動態(tài)表面性能的影響(下)
推薦新聞Info
-
> 重烷基苯磺酸鹽化學(xué)性質(zhì)、界面性質(zhì)和驅(qū)油機(jī)理研究(二)
> 重烷基苯磺酸鹽化學(xué)性質(zhì)、界面性質(zhì)和驅(qū)油機(jī)理研究(一)
> 高速運(yùn)動的微小水滴撞擊深水液池產(chǎn)生的空腔運(yùn)動及形成機(jī)理(三)
> 高速運(yùn)動的微小水滴撞擊深水液池產(chǎn)生的空腔運(yùn)動及形成機(jī)理(二)
> 高速運(yùn)動的微小水滴撞擊深水液池產(chǎn)生的空腔運(yùn)動及形成機(jī)理(一)
> 玻璃窗上水滴的運(yùn)動控制影響因素及模型構(gòu)建
> 勝利油田常規(guī)和親油性石油磺酸鹽組成、色譜、質(zhì)譜、界面張力測定(一)
> 三元復(fù)合體系的界面擴(kuò)張黏彈性對水驅(qū)后殘余油的乳化作用——結(jié)論
> 三元復(fù)合體系的界面擴(kuò)張黏彈性對水驅(qū)后殘余油的乳化作用——實驗材料及條件
> 新工藝提升葉黃素和玉米黃素聯(lián)產(chǎn)的塔式萃取效率
表面張力和接觸角對塑料熔體在微型通道內(nèi)的流變行為的影響(一)
來源:中國塑料 瀏覽 1191 次 發(fā)布時間:2024-10-16
擠出成型因為具有實用范圍廣、生產(chǎn)效率高、投資少、見效快等一系列優(yōu)點而成為高聚物成型的最重要的方法之一。近年來,產(chǎn)品微型化呈現(xiàn)出蓬勃發(fā)展的趨勢。擠出產(chǎn)品也朝著微型化的方向發(fā)展。由于微尺度效應(yīng)的影響,宏觀的工藝參數(shù)、結(jié)構(gòu)參數(shù)、物理參數(shù)不能簡單的按幾何比例縮小應(yīng)用到微擠出成型過程中。一些在宏觀擠出中可以忽略的影響因素包括壁面滑移、表面張力、對流換熱、黏性耗散等在微尺度效應(yīng)下變得不可忽略,甚至成為影響微擠出成型的主要因素。對塑料熔體在微型通道內(nèi)的流變行為的研究是對流變理論的一種完善和補(bǔ)充,有助于推動微擠出的不斷完善,并且有利于擴(kuò)大塑料微擠出技術(shù)的應(yīng)用領(lǐng)域。
本文采用Polyflow軟件對聚合物在微通道中的流變行為進(jìn)行數(shù)值模擬,研究了表面張力對微擠出流場的影響。
1表面張力
1.1定義或解釋
促使液體表面收縮的力叫做表面張力,其本質(zhì)是分子力,是液體表面層由于分子引力不均衡而產(chǎn)生的沿表面作用于任一界線上的張力。表面張力的方向和液面相切,其合力沿著曲面法向方向。接觸角用來表示表面張力的方向。表面張力及接觸角如圖1所示。
單位面積上的表面張力的合力fn使表面曲率減少,σ為表面張力系數(shù),滿足式(1):
圖1表面張力及接觸角
式中fn——單位面積上的法向力,N/m2
σ——表面張力系數(shù),N/m
R——材料接觸界面的高斯曲率,m
n——液體自由表面法向方向的單位矢量
R滿足式(2):
式中R1、R2——接觸界面的2種材料的曲率半徑
表面張力的方向和液面相切,液體表面由于表面張力作用所引起的切向力為:
式中fτ——液體表面上受到的切向力
l——自由表面的長度
τ——液體自由表面切向方向的單位矢量
通常用接觸角(θ)來描述切向力的方向。以水平線為參考線,逆時針為正,順時針為負(fù):
在計算流體力學(xué)中,常采用Brackbill的連續(xù)表面力模型CSF 將界面的表面張力項離散為等效的體積力,以附加體積力的方式加到流體的動量方程中。它分布在交界面上很薄的一層區(qū)域內(nèi)。其離散公式為:
式中k——界面上的曲率
δ(x)——界面上的函數(shù)
n——界面上的法向向量(向外為正)
δ(x-xs)——狄拉克δ函數(shù)
xs——界面S上的點
2數(shù)值模擬
采用聚合物專用流體分析軟件Polyflow,對圓形截面的流道進(jìn)行模擬分析,探討表面張力的尺寸效應(yīng)及表面張力系數(shù)和接觸角對微擠出流場的影響。由于流道結(jié)構(gòu)及流場的對稱性,本模擬采用軸對稱分析。模擬分析的流道尺寸及網(wǎng)格劃分如圖2所示。微通道尺寸AE=4×AB=1.2mm。網(wǎng)格采用四邊形結(jié)構(gòu)單元。節(jié)點數(shù)量為3751,網(wǎng)格數(shù)量為3600。
圖2微通道的網(wǎng)格
在數(shù)值模擬時,熔體自由表面在模擬的過程中會發(fā)生變形,自由表面的網(wǎng)格會因為自由表面位置的變化而發(fā)生變化。此時,需要采用網(wǎng)格重置技術(shù)。網(wǎng)格重置可以根據(jù)邊界點的位置的變化重新定位內(nèi)部網(wǎng)格節(jié)點。Spine法是一種比較簡單,適用于二維擠出成型的網(wǎng)格重置方法。其網(wǎng)格節(jié)點是沿著線性進(jìn)行重新組織的,如圖3所示。節(jié)點的位置確定是按照一維方式進(jìn)行邏輯排列的,這就像是對二維平面進(jìn)行切片,切片的方式是沿著自由表面或者移動邊界的法向方向,從而得到最終的網(wǎng)格。Spine法是線性組織的,并且在每個線段的端點處都有相應(yīng)的節(jié)點。假設(shè)x1、x2是線段的2個端點。按照Spine法的規(guī)則,內(nèi)部節(jié)點的位移數(shù)學(xué)表達(dá)式為:
圖3 Spine法變形網(wǎng)格
塑料熔體的表面張力系數(shù)一般在50N/mm左右,模擬時表面張力系數(shù)的取值范圍為(0~50N/mm),接觸角取值范圍為(-50°~50°)。材料黏度模型采用常數(shù)η0=100Pa·s。邊界條件設(shè)定為:EF為材料進(jìn)口端,法向速度設(shè)置為10mm/s,BF為對稱軸,CE壁面處的速度為零,AB邊界設(shè)置為法向力等于零,切向力等于零,AC為自由表面。