合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 不同溫度下可溶解聚乙二醇低共熔溶劑的密度、電導(dǎo)率、表面張力等性質(zhì)(二)
> 可視化實驗方法研究電場作用下液滴撞擊表面的動態(tài)行為(四)
> 正己醇聚氧乙烯醚硫酸鈉、正己醇聚氧丙烯醚硫酸鈉水溶液平衡表面張力、動態(tài)表面張力測定(一)
> 硅基納米原位乳化減阻劑與原油的界面張力達(dá)到10-1mN/m數(shù)量級,提高原油采收率
> 地下水質(zhì)量標(biāo)準(zhǔn)(GB/T 14848-2017)
> 帶油涂裝涂料的優(yōu)缺點(diǎn)、表面性能及研究
> ?高分子表面活性劑HS-PA粒徑、表面張力、應(yīng)用性能等測定——結(jié)果與討論、結(jié)論
> 應(yīng)用熒光顯微鏡研究了蛋白質(zhì)在氣-水界面的組裝——結(jié)論、致謝!
> 表面張力儀的測試范圍以及測值精度的意義
> 七葉皂素分子在氣-液、液-液(油-水)、固-液界面上的界面行為研究(一)
推薦新聞Info
-
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(三)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(二)
> 鈉鉀離子濃度對礦井水和純水表面張力、噴霧霧化特性的影響(一)
> Layzer模型與Zufiria模型研究界面張力對Rayleigh-Taylor氣泡不穩(wěn)定性的影響
> 深過冷Ni-15%Sn合金熔體表面張力的實驗研究與應(yīng)用前景
> ?表面張力在微孔曝氣法制備微氣泡中的核心作用——基于實驗研究的深度解析
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對L-薄荷醇的緩釋作用(三)
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對L-薄荷醇的緩釋作用(二)
> 十二胺功能化石墨烯量子點(diǎn)的制備、表面張力及對L-薄荷醇的緩釋作用(一)
> 超微量天平比普通電子天平“好”在哪?
316L不銹鋼粉末電子束熔化成形的熔合機(jī)制的研究(一)
來源:粉末冶金工業(yè) 瀏覽 902 次 發(fā)布時間:2024-12-30
摘要:本文通過球粉熔合理論和試驗方法闡述了熔粉成形過程,探究電子束熔粉成形過程的粉末熔合機(jī)制。結(jié)果表明,試驗結(jié)果吻合熔粉理論模型。熔合初期,離散粉末預(yù)熱后小粒徑的粉末顆粒幾乎完全熔入大顆粒中,顆粒與顆粒之間相連形成聚合結(jié)構(gòu)。熔合中期,粉末中形成大體積空隙,在熔池溶體表面張力的作用下呈現(xiàn)柱狀結(jié)構(gòu),且相互之間連通。熔合末期,因材料擴(kuò)散傳質(zhì)和表面張力的作用,氣孔逐漸被排除,致密度接近理論密度。由于電子束接觸位置的熱載荷較高且向周圍散熱速度較快,因此成形件內(nèi)部出現(xiàn)大量板條狀馬氏體晶粒。
近年來,電子束選區(qū)熔粉技術(shù)(EBSM)在快速成形領(lǐng)域成為重點(diǎn)研究課題,與激光選區(qū)熔粉技術(shù)(LSM)相比,可以顯著節(jié)約制造成本,且不需要退火等熱處理,主要原因在于熔粉成形的原材料,LSM技術(shù)使用粉末粒徑小于EBSM技術(shù)使用的粉末,粉末制造成本就高出很多。瑞典Arcam公司的EBM機(jī)較有名氣,雖然國內(nèi)的電子束熔粉快速成形機(jī)集成度不高但功能方面相差不大。大多學(xué)者在電子束輸入能量和成形效果方面進(jìn)行了大量的試驗,很少有人從量化的角度探究粉末熔合過程。因此本文在已有研究的基礎(chǔ)上,結(jié)合特定的電子束熔粉工藝,探討了電子束點(diǎn)陣輸入能下的粉末熔合機(jī)制。
1試驗
1.1試驗設(shè)備
試驗設(shè)備為桂林獅達(dá)公司自制的THDW-3型電子束熔粉打印機(jī),電子槍的型號為M176,電子槍真空度為5×10-2Pa,熔粉成形室注入氦氣之后的真空度為0.3 Pa。電子槍的參數(shù)如表1所示。成形設(shè)備如圖1所示。
1.2試驗方法
本文以不銹鋼316L(022Cr17Ni12Mo2)球粉為成形原料,顆粒直徑為45~106μm(如圖2所示)【316L不銹鋼的微觀組織:相鄰熔覆道之間的搭接良好。組織主要由胞狀晶和呈外延生長的柱狀晶組成,柱狀晶的取向各不相同。由于熔池邊界處粉末未熔化區(qū)域溫度較低,因此一部分晶粒沿著熔池邊界外延生長,同時在SLM過程中,熔池內(nèi)部經(jīng)歷快速冷卻,表面張力形成梯度,熔池內(nèi)部存在“馬戈紊流”,熔池內(nèi)發(fā)生對流,導(dǎo)致熔池內(nèi)部散熱方向發(fā)生改變,因此,造成晶粒顯示出不同的生長方向。胞狀晶呈正六邊形,為柱狀晶的截面,柱狀晶晶粒十分細(xì)小,直徑分布在0.4~0.7μm。】,根據(jù)筆者已有的研究結(jié)果選擇合適的工藝,詮釋顆粒群的熔合線收縮和再結(jié)晶過程。由于試驗粉末顆粒直徑分布廣,為了建立粉末計算模型,用式(1)、(2)計算了顆粒群的當(dāng)量直徑d和算術(shù)平均直徑d。
的當(dāng)量直徑,μm;ni為當(dāng)量直徑為di的顆粒的個數(shù)。計算可知,試驗粉末的算術(shù)平均直徑為65μm。再取100 mL的試驗粉料稱重,凈重為0.40 kg;計算得到試驗粉末體積孔隙率ε為0.49,因此粉末顆粒并非最緊密堆積狀態(tài)。熔粉制備了橫截面積為5 cm2,長5 cm的圓棒,每層鋪粉0.10 mm,實驗流程如圖3所示。
2熔粉數(shù)值模型
2.1熔合初期
電子束熔粉與激光熔粉不同,因為電子束是以帶電粒子的定向運(yùn)動產(chǎn)生的動能作為能量來源的,所以必須有導(dǎo)電回路才能不斷地轟擊工件。但粉末層是孔隙材料,導(dǎo)電性較差,因此在電子束接觸粉末的瞬間可能出現(xiàn)靜電潰散現(xiàn)象。為了確定熔粉初期的工藝模式,文章選用了雙球模型,計算不發(fā)生靜電潰散時的臨界線收縮量,結(jié)構(gòu)模型如圖4所示。計算公式如式(3)。
式中:L0為燒結(jié)前的球心距,m;ΔL為燒結(jié)之后的縮短值,m;r為顆粒初始當(dāng)量半徑,m;試驗粉末當(dāng)量半徑為33μm。x為燒結(jié)頸半徑,m;ρ為頸部曲率半徑,m;θ為頸部擴(kuò)展處中心連線與球心連線的夾角。試驗選取的線收縮率為0.11,用此收縮率控制電子束預(yù)熱輸入能,再代入動力學(xué)算式(4)。
式中:γ為界面張力,N/m;δ為原子或離子等質(zhì)點(diǎn)的直徑,m;Dυ為原子自擴(kuò)散系數(shù)(體積擴(kuò)散系數(shù)),m2/s;k
為玻爾茲曼常數(shù);T為溫度,K;t為燒結(jié)時間,s。通過上述方程和實際散熱情況,計算出打印件每層粉末預(yù)熱時間。本文保證沉積層下方溫度為700℃,用1 mA束流,2倍束斑直徑大小的間距依次掃描該層沉積域粉末進(jìn)行預(yù)熱,時長3 s,掃描4次。





