合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 兩親性碳點(diǎn)CDS表面活性劑濃度、膠束對(duì)硅酸鹽溶液潤(rùn)滑性能的影響(一)
> 低分子熱塑性樹脂體系CBT500/DBTL的界面張力與溫度的關(guān)聯(lián)性(一)
> 不動(dòng)桿菌菌株XH-2產(chǎn)生物表面活性劑發(fā)酵條件、性質(zhì)、成分研究(一)
> 表面張力儀的校準(zhǔn)方法
> 連鑄結(jié)晶器內(nèi)渣鋼兩相表面張力和界面張力的演變行為與機(jī)制
> β-乳球蛋白質(zhì)納米纖維制備及界面吸附和界面流變行為分析——結(jié)果與分析、結(jié)論
> 磁場(chǎng)強(qiáng)度和磁化時(shí)長(zhǎng)對(duì)除草劑溶液表面張力、噴霧霧滴粒徑的影響(二)
> 幾種陰離子表面活性劑的基本性質(zhì)及應(yīng)用性能
> 表面活性劑提高油田污水回注效率的機(jī)理研究
> 乳化劑、皂液pH值、締合型增稠劑T對(duì)乳化瀝青油水界面張力和貯存穩(wěn)定性的影響
推薦新聞Info
-
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測(cè)定及對(duì)泡沫壓縮性能的影響(三)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測(cè)定及對(duì)泡沫壓縮性能的影響(二)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測(cè)定及對(duì)泡沫壓縮性能的影響(一)
> 多功能膜材研發(fā):界面張力已成為整套工藝鏈協(xié)同下動(dòng)態(tài)演化的核心控制點(diǎn)
> 不同類型的聚醚類非離子破乳劑對(duì)PPG-稀釋原油界面膜性質(zhì)的影響(下)
> 不同類型的聚醚類非離子破乳劑對(duì)PPG-稀釋原油界面膜性質(zhì)的影響(上)
> 表面張力、XPS試驗(yàn)研究DDA或TPA在鋰云母表面的吸附機(jī)理——試驗(yàn)結(jié)果分析與討論、結(jié)論
> 表面張力、XPS試驗(yàn)研究DDA或TPA在鋰云母表面的吸附機(jī)理——試驗(yàn)原料及研究方法
> 超微量天平應(yīng)用于珊瑚鍶-鈣溫度計(jì)的研究
> ?90%實(shí)驗(yàn)室不知道:表面張力儀讀數(shù)誤差的隱秘來源與終極解決方案
溫度對(duì)水—十二烷基硫酸鈉體系與純水體系界面張力、厚度的影響——模擬方法
來源:河南化工 瀏覽 444 次 發(fā)布時(shí)間:2025-04-14
摘要:采用分子動(dòng)力學(xué)模擬技術(shù),對(duì)水及其表面活性劑體系的汽—液界面行為進(jìn)行了研究。模擬結(jié)果表明,隨著溫度的升高,純水體系液相主體密度降低,氣—液界面厚度增大,界面張力逐漸減??;水—十二烷基硫酸鈉體系與純水體系相比,汽—液界面厚度明顯增大,汽—液界面張力明顯減小,其隨溫度的變化規(guī)律和純水體系一致。
眾所周知,表面活性劑具有降低水的表面張力能力,其在氣—液界面上的吸附行為是發(fā)揮效用的關(guān)鍵。氣—液界面熱力學(xué)行為一直是相變傳熱傳質(zhì)研究的重點(diǎn)。由于氣—液界面厚度非常薄,這就使得其理論分析和實(shí)驗(yàn)研究變得十分困難。近些年來,隨著計(jì)算機(jī)技術(shù)的迅猛發(fā)展,越來越多的學(xué)者采用分子動(dòng)力學(xué)(MD)模擬方法,來研究氣—液相變界面特性。Kuhn等采用分子動(dòng)力學(xué)方法,考查了氣—液界面上的脂肪醇聚氧乙烯醚非離子表面活性劑(C12E5)單分子層的結(jié)構(gòu)參數(shù)以及分子的動(dòng)態(tài)行為。Wu等采用分子動(dòng)力學(xué)模擬技術(shù),分析了不同種類的胺基Gemini型表面活性劑在正庚烷—水體系的界面張力、密度分布,以及分子的微觀結(jié)構(gòu),其模擬結(jié)果與實(shí)驗(yàn)吻合良好。苑世領(lǐng)等用分子動(dòng)力學(xué)模擬的方法,研究了陰離子表面活性劑十二烷基硫酸鈉(SDS)在汽—液界面上的結(jié)構(gòu)和動(dòng)力學(xué)性質(zhì)。肖紅艷等研究了不同油相和鹽度條件下表面活性劑—烷烴—水體系的界面結(jié)構(gòu),給出了徑向分布函數(shù)、二面角幾率變化等動(dòng)力學(xué)結(jié)構(gòu)信息。本文擬采用分子動(dòng)力學(xué)模擬方法,利用LAMMPS軟件模擬水及其表面活性劑體系的氣—液界面行為。
1模擬方法
1.1模擬體系
采用直角坐標(biāo)系,水體系的模擬盒子(初始狀態(tài))如圖1所示,其大小為L(zhǎng)x×Ly×Lz=12 nm×4 nm×4 nm。液體水分子以面心立方(FCC)晶格方式排列于模擬盒子的中央,汽相分別處于液相的左右兩側(cè),整個(gè)模擬體系中有兩個(gè)氣—液界面。
圖1水體系的模擬盒子(初始狀態(tài))
采用直角坐標(biāo)系,水—十二烷基硫酸鈉表面活性劑體系的模擬盒子(初始狀態(tài))如圖2所示,其大小為L(zhǎng)x×Ly×Lz=12 nm×4 nm×4 nm。液體水分子以隨機(jī)分布的方式位于模擬盒子的中央,兩側(cè)各有一相對(duì)的表面活性劑單分子層,汽相分別處于液相的左右兩側(cè),整個(gè)模擬體系中有兩個(gè)氣—液界面。
圖2水—十二烷基硫酸鈉體系的模擬盒子(初始狀態(tài))
1.2勢(shì)能模型
水分子模型很多,如SPC、SPCE、TPI3P和TPI4P等,其結(jié)構(gòu)示意圖和模型參數(shù)分別見圖3和表1。水分子的勢(shì)能函數(shù)如式(1)所示。
圖3不同水分子模型的結(jié)構(gòu)示意圖
圖3a中為SPC、SPCE和TIP3P模型,b為TIP4P模型(L:負(fù)電荷作用點(diǎn);H:正電荷作用點(diǎn))
表1水分子模型參數(shù)
表中:q,電量,C;σ,尺度參數(shù),nm;ε,能量參數(shù),J;kB,玻爾茲曼常數(shù),J/K;r,分子間距,nm;θ鍵角,(°)。
在水—表面活性劑體系的MD模擬中,十二烷基硫酸鈉采用全原子模型,力場(chǎng)參數(shù)基于AMBER力場(chǎng),其函數(shù)形式如方程(2)所示。
式中:kr、kθ、Vn分別為鍵力常數(shù)、彎曲力常數(shù)、二面角扭曲常數(shù);l0、θ0分別為標(biāo)準(zhǔn)鍵長(zhǎng)和標(biāo)準(zhǔn)鍵角;n為整數(shù)(繞鍵旋轉(zhuǎn)360°時(shí)出現(xiàn)的能量最小值的數(shù)目);φ為二面角;rij為原子i和j之間的距離;靜電相互作用項(xiàng)中的q表示原子上的電荷數(shù),e。不同原子間的范德華相互作用項(xiàng)中的εij和σij,采用Lorentz-Berthelot混合規(guī)則。
1.3模擬細(xì)節(jié)
水體系模擬在x、y、z方向均采用周期性邊界條件,原子間力的截?cái)喟霃綖?2 nm,模擬時(shí)間步長(zhǎng)為1 fs,總模擬時(shí)間為0.6 ns,前0.4 ns使得系統(tǒng)達(dá)到平衡,后0.2 ns統(tǒng)計(jì)計(jì)算并輸出系統(tǒng)的密度分布、界面張力以及界面厚度。采取正則系綜(NVT),并采用Woodcock控溫法維持體系溫度衡定;依照設(shè)定的溫度,隨機(jī)分布分子的初始平動(dòng)速度;為了保證水分子不偏離盒子中心,每隔1 000步矯正體系的質(zhì)心,使之在x、y、z方向始終處于盒子的中心處;水—十二烷基硫酸鈉體系模擬原子間力的截?cái)喟霃綖?0 nm,庫(kù)倫力的截?cái)喟霃綖?2 nm;模擬時(shí)間步長(zhǎng)為1 fs,總模擬時(shí)間為1.4 ns,前1.0 ns使得系統(tǒng)達(dá)到平衡,后0.4 ns統(tǒng)計(jì)計(jì)算并輸出數(shù)據(jù),其他的模擬設(shè)置同水體系一樣。本文模擬數(shù)據(jù)均采用LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)軟件計(jì)算得到。