合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 氣溶膠固定劑PAM-b-PVTES合成路線及GPC、DSC、表面張力等性能測試(三)
> 通過3個小實驗來理解水的表面張力
> 基于表面張力測試優(yōu)化畫筆顏料配方
> 什么是?LB膜分析儀?LB膜分析儀的工作原理及作用
> 溴化鋰及離子液體水溶液密度、黏度和表面張力測定與計算
> 強紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(一)
> 壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗結(jié)果與討論
> 軟物質(zhì)褶皺形成機制新發(fā)現(xiàn):液體浸潤、表面張力與接觸線釘扎效應(yīng)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(二)
> 一種磺酸鹽類的高分子活性劑合成、分子結(jié)構(gòu)及對油田污水回注效率影響
推薦新聞Info
-
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(三)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(二)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(一)
> 多功能膜材研發(fā):界面張力已成為整套工藝鏈協(xié)同下動態(tài)演化的核心控制點
> 不同類型的聚醚類非離子破乳劑對PPG-稀釋原油界面膜性質(zhì)的影響(下)
> 不同類型的聚醚類非離子破乳劑對PPG-稀釋原油界面膜性質(zhì)的影響(上)
> 表面張力、XPS試驗研究DDA或TPA在鋰云母表面的吸附機理——試驗結(jié)果分析與討論、結(jié)論
> 表面張力、XPS試驗研究DDA或TPA在鋰云母表面的吸附機理——試驗原料及研究方法
> 超微量天平應(yīng)用于珊瑚鍶-鈣溫度計的研究
> ?90%實驗室不知道:表面張力儀讀數(shù)誤差的隱秘來源與終極解決方案
不同溫度壓力下CO2和混合烷烴的界面張力測定(一)
來源:石油與天然氣化工 瀏覽 395 次 發(fā)布時間:2025-05-14
CO2驅(qū)提高采收率由于其明確的機理和控制碳排放的優(yōu)勢在眾多強化采油技術(shù)中脫穎而出。CO2混相驅(qū)油技術(shù)提高了采油率,可使油田的采收率高達90%。此外,還實現(xiàn)了CO2封存,減少了大氣中CO2含量,實現(xiàn)CO2資源利用。我國早在1999年就有對CO2混相驅(qū)先導(dǎo)試驗的研究。
CO2混相是一個動態(tài)的蒸發(fā)氣驅(qū)過程,即CO2通過與原油的多次接觸,蒸發(fā)或萃取原油中的輕烴組分,使前緣注入氣富化后與原油混溶形成混相帶,形成的CO2-原油混相帶驅(qū)替原油從開采井中采出?;煜囹?qū)要求油藏壓力高于或等于CO2與原油完全混相的最低壓力(MMP),Holm and Josendal將MMP定義為當(dāng)80%以上的油被回收時的CO2突破壓力。最小混相壓力(MMP)是判斷混相是否形成的重要參數(shù)。
在CO2混相驅(qū)油工程發(fā)展迅速的大背景下,本實驗試圖借助先進的ASDA-P技術(shù),用傳統(tǒng)的高壓懸滴法測出不同溫度壓力下CO2和混合烷烴的界面張力,并采用外推法對最小混相壓力(MMP)進行預(yù)測。
1實驗
1.1實驗原理
ADSA-P方法將計算得到的理論輪廓和圖像識別出的實際輪廓進行比對得到準(zhǔn)確的界面張力值等參數(shù)。其中,實際輪廓由圖像處理軟件自動生成,而理論輪廓的計算基于描述界面張力和液滴自身重力之間達到靜態(tài)力平衡時液滴界面形狀的經(jīng)典Laplace-Young方程。假定液體懸滴此時只受到界面張力和重力的作用。采用懸滴法能夠較為準(zhǔn)確地測量混合烷烴與CO2的界面張力。采用式(1)可計算出界面張力的大小。
式中:γ為界面張力,mN/m;Δρ為液相與環(huán)境相的密度差,g/mL;g為當(dāng)?shù)氐闹亓铀俣?m/s2;de為懸滴外形輪廓上最大直徑,cm;H為修正后的形狀因子。
1.2實驗裝置和材料
本實驗所測量的CO2與混合烷烴的界面張力需模擬實際油藏的地層環(huán)境,即高溫高壓,且有地下鹽水層的存在。為此,設(shè)計了如圖1所示的實驗系統(tǒng)以實現(xiàn)這一目標(biāo)。該系統(tǒng)從實驗原理上主要分為照明系統(tǒng)、圖像采集系統(tǒng)和圖像分析系統(tǒng);從測試材料上主要分為進液系統(tǒng)、進氣系統(tǒng)和進鹽水系統(tǒng);從實驗環(huán)境上主要分為氣體測壓系統(tǒng)、氣體控溫系統(tǒng)和液體控溫系統(tǒng)。實驗用材料來源及純度見表1,烷烴的組分模擬伊朗西南部的阿瓦茲-班吉斯坦(Ahwaz-Bangestan)油田原油的成分,不考慮瀝青質(zhì),摩爾分?jǐn)?shù)分別為:正庚烷8.93%,正辛烷9.02%,正癸烷5.26%,正十一烷5.72%,正十二烷71.07%。NaCl溶液的質(zhì)量分?jǐn)?shù)為17.33%。實驗中將CO2與鹽水溶液飽和后,測其與混合烷烴的界面張力。
表1化合物來源和純度
實驗在一定溫度壓力、混合烷烴被NaCl溶液飽和的CO2環(huán)境中進行。實驗溫度分別為40℃和60℃。溫度為40℃時,選擇壓力為3.0~8.5 MPa,壓力每升高0.5 MPa測量1組數(shù)據(jù);溫度為60℃時,選擇壓力為3.0~9.5 MPa,壓力每升高0.5 MPa測量1組數(shù)據(jù)。實驗最終得到有效數(shù)據(jù)共24組。
重力加速度選擇系統(tǒng)默認(rèn)為9.8100 m/s2。CO2的密度數(shù)據(jù)來源于美國國家標(biāo)準(zhǔn)與技術(shù)研究院(NIST)官網(wǎng)發(fā)布的NIST化學(xué)網(wǎng)頁版標(biāo)準(zhǔn)參考數(shù)據(jù)庫,編號為69(NIST Chemistry WebBook,SRD 69);混合烷烴的密度數(shù)據(jù)來源于AP1700的物質(zhì)物性計算查詢平臺,對于烴類混合物的計算,采用較為普遍使用的SUPERTRAPP模型。實驗中不考慮CO2被NaCl溶液飽和后引起的密度變化。實驗以0.02 mL/min的速度進液,同時進行實時錄像,得到同一壓力溫度下,連續(xù)3滴懸滴從形成到完全滴下的錄像,保存至電腦留作后續(xù)處理。