新聞中心Info
合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 微流控器件結構對水/水微囊形成過程、界面張力的影響規(guī)律(二)
> 接觸角遲滯時氣~液界面張力的溫度敏感性對液滴蒸發(fā)過程的影響——理論模型及計算方法
> 表面張力與涂料質量關系
> 楊式方程、Wenzel 方程 Zisman 準則揭秘液體與固體表面之間的復雜關系
> Kibron表面張力儀研究燒結礦聚結行為
> 應用單分子層技術分析磷脂酶與不同磷脂底物特異水解性能:摘要、介紹、材料和方法
> 水相PH、鹽濃度對380號燃料油油水界面張力的影響
> FYXF-3煤粉懸浮劑潤濕吸附性能、?傷害性能及在煤層氣壓裂改造現(xiàn)場的實施方案(二)
> 東辛原油酸性活性組分油水界面張力、動態(tài)界面擴張流變性質研究(二)
> 表面張力儀在藥物研發(fā)領域的應用【案例】
推薦新聞Info
-
> 不同官能度聚醚酯結構、消泡性能、表面張力測定(三)
> 不同官能度聚醚酯結構、消泡性能、表面張力測定(二)
> 不同官能度聚醚酯結構、消泡性能、表面張力測定(一)
> 工業(yè)廢胺衍生捕收劑的表面張力行為及其在鐵礦反浮選中的應用(三)
> 工業(yè)廢胺衍生捕收劑的表面張力行為及其在鐵礦反浮選中的應用(二)
> 工業(yè)廢胺衍生捕收劑的表面張力行為及其在鐵礦反浮選中的應用(一)
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(一)
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(三)
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(二)
> 界面張力為22mN/m的柴油-水分離濾紙振動特性研究(三)
表面張力梯度作用下氣液界面微顆粒運動狀態(tài)研究
來源:喻澤雄 瀏覽 1506 次 發(fā)布時間:2023-01-12
【摘要】:氣液界面是微顆粒富集的重要場所,對氣液界面上的微顆粒進行操控在微裝配、微混合、微清掃等領域具有廣闊的應用前景。微尺度下,常規(guī)的接觸式操控粘連現(xiàn)象凸顯且易造成污染;通過施加非均勻外場產生的梯度力進行非接觸式操控可有效避免粘連現(xiàn)象,但這些作用力如光場梯度力、磁場梯度力、電場梯度力等分別正比于~L~3、~L~3、~L~0(L為顆粒特征尺度),一旦尺度較小,其操控效率較低。而漂浮于氣液界面微顆粒都會受到表面張力(~L~(-1))的作用,這種作用隨著尺度減小變得更加顯著。
因此通過表面張力能顯著提高微操控的效率。為此,本文基于表面張力梯度產生的兩種方式,表面張力系數(shù)梯度和界面曲率梯度,分別提出了由高斯光誘導的溫度梯度導致的表面張力系數(shù)梯度,以及由毛細波誘導的界面的曲率梯度從而產生的表面張力梯度對界面上的微顆粒進行驅動研究。本文通過實驗與數(shù)值模型相結合研究了具有“瘦高型”能量集中式高斯分布的UV光入射到含有光熱效應Fe_3O_4顆粒液滴時,由于光強的不均勻分布,液滴表面會形成約2K/mm的溫度梯度,從而產生Marangoni對流驅動納米顆粒在液滴內部形成渦流運動,其最大速度可達~10mm/s的數(shù)量級。
并且詳細給出了液滴表面的溫度分布以及液滴內部的流動狀態(tài)。并且通過數(shù)值模型研究了不同液滴高度以及不同輪廓高斯光對驅動效果的影響,結果表明:
(1)液滴高度越小,其表面可產生更大的溫度梯度,驅動效果更好;
(2)在能量密度相同條件下,相較于“矮胖型”高斯光,“瘦高型”高斯光能量更為集中,其驅動效果更好。其次基于上述高斯光誘導的液滴內部的渦流運動,提出了一種非接觸式微液滴內部混合機制,當高斯光交替從液滴左右對稱位置垂直入射,液滴內部會交替形成大小不同的漩渦,達到混合增強的目的,本文通過數(shù)值模型驗證了該機制的混合效果,并且分析了液滴高度和高斯光入射位置對混合效果的影響,最后探討了溫升和樣品的透光性對該混合機制的影響。
最后本文通過由氣泡生長潰滅所產生的毛細波對界面上的微顆粒進行驅動研究,在實驗中觀測到當毛細波掠過微顆粒時,顆粒依次經歷了前推與回拉,并產生了顯著的凈位移,其最大速度可達~100mm/s的數(shù)量級?;诖?,首先在COMSOL中建立了二維軸對稱模型對毛細波傳播進行了數(shù)值研究,結果表明,毛細波傳播速度在~m/s數(shù)量級,并且由于粘性耗散,毛細波傳播過程中其振幅波速在不斷衰減。隨后在COMSOL中建立了三維模型對毛細波驅動界面上微顆粒進行研究,采用兩相流相場方法模擬相界面并且使用動網格接口來模擬顆粒運動。
由于相場方法中將表面張力作為體積力加入到N-S方程中,因此相場方法中的界面上會產生壓強突躍,并且壓強突躍峰值隨著界面厚度的增加而減小,因此,進行了在不同界面厚度下毛細波對顆粒的驅動研究,結果表明,僅當界面厚度較薄時,顆粒才可產生先前推后回拉運動,當界面厚度較厚時,顆粒僅能產生前推運動而無法回拉。最后進行了毛細波對不同尺寸顆粒、不同波源距離顆粒以及不同初始振幅毛細波對顆粒驅動研究,分析了由于顆粒尺寸和質量、毛細波傳播中能量的衰減以及波長與波速之間的關系對顆粒驅動的影響。





