合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 壓裂用助排劑表(界)面張力檢測影響因素分析
> 界面張力越大說明什么
> 基于表面張力平衡法制備油基巖屑-高鈦礦渣-赤泥基輕質(zhì)高強(qiáng)免燒陶粒
> 聚合物驅(qū)原油破乳劑的研究及應(yīng)用
> LB膜分析儀-α-短螺旋抗菌肽對(duì)癌細(xì)胞選擇性及其抗癌作用的分子機(jī)制:結(jié)果、討論、結(jié)論、致謝!
> 華中科技大學(xué)化學(xué)與化工學(xué)院趙強(qiáng)課題組在聚電解質(zhì)膜領(lǐng)域取得新進(jìn)展
> 克服表面張力使液態(tài)金屬可拉伸電子器件化的研究進(jìn)展
> 科普:什么是表面活性劑?
> 探索泡沫粗化與表面流變學(xué)之間的關(guān)聯(lián)性疏水性蛋白——材料和方法
> 一種無污染的光電微流控技術(shù)
推薦新聞Info
-
> 多功能膜材研發(fā):界面張力已成為整套工藝鏈協(xié)同下動(dòng)態(tài)演化的核心控制點(diǎn)
> 不同類型的聚醚類非離子破乳劑對(duì)PPG-稀釋原油界面膜性質(zhì)的影響(下)
> 不同類型的聚醚類非離子破乳劑對(duì)PPG-稀釋原油界面膜性質(zhì)的影響(上)
> 表面張力、XPS試驗(yàn)研究DDA或TPA在鋰云母表面的吸附機(jī)理——試驗(yàn)結(jié)果分析與討論、結(jié)論
> 表面張力、XPS試驗(yàn)研究DDA或TPA在鋰云母表面的吸附機(jī)理——試驗(yàn)原料及研究方法
> 超微量天平應(yīng)用于珊瑚鍶-鈣溫度計(jì)的研究
> ?90%實(shí)驗(yàn)室不知道:表面張力儀讀數(shù)誤差的隱秘來源與終極解決方案
> 基于LB膜技術(shù)制備膠原蛋白肽覆層羥基磷灰石的新方法——結(jié)果與討論、結(jié)論
> 基于LB膜技術(shù)制備膠原蛋白肽覆層羥基磷灰石的新方法——摘要、材料與方法
> 離子組成、pH值對(duì)納米SiO2/SDS體系降低油水界面張力的影響(三)
乙醇、正丁醇、乙二醇等醇對(duì)BHEC水溶液表面張力的影響
來源:石油化工 瀏覽 2873 次 發(fā)布時(shí)間:2023-05-29
本工作采用乙醇、正丁醇、乙二醇、1,2-丙二醇、正辛醇和十二醇為添加劑,研究了不同醇對(duì)BHEC水溶液表面張力的影響。
不同的醇對(duì)BHEC水溶液表面張力的影響見下圖。
不同的醇對(duì)BHEC水溶液表面張力的影響
從圖可看出,乙醇、正丁醇、乙二醇和1,2-丙二醇4種醇均對(duì)BHEC水溶液的表面張力產(chǎn)生影響。因?yàn)檫@4種醇都是小分子極性有機(jī)化合物,一方面由于醇碳?xì)滏溨車摹氨健苯Y(jié)構(gòu)能插入到表面活性劑的膠束中,導(dǎo)致表面活性劑分子在水溶液表面的吸附能力增強(qiáng),即表面張力下降;另一方面醇分子又易與水分子結(jié)合形成氫鍵,改變表面活性劑分子周圍形成的“冰山”結(jié)構(gòu),導(dǎo)致醇分子本身參與BHEC膠束的形成,能夠穿插于BHEC分子之間,從而改變BHEC膠束的表面電荷密度,導(dǎo)致BHEC水溶液的表面張力增加或降低。
乙醇和正丁醇屬于一元醇,這兩種醇的加入能使BHEC水溶液的表面張力減小。當(dāng)未加入一元醇時(shí),BHEC溶于水后,BHEC分子能自發(fā)地吸附在溶液的表面,使溶液的表面張力降低,表面吸附的BHEC分子越多,溶液表面張力的降幅越大,當(dāng)然這其中有一個(gè)吸附飽和的問題。但由于BHEC分子在水中處于空間交聯(lián)網(wǎng)絡(luò)結(jié)構(gòu),其定向排列時(shí)分子間存在一定的空間(見上圖)。加入乙醇或正丁醇后,醇分子可以插入BHEC分子間的空隙,使溶液表面吸附的分子達(dá)到緊密排列的狀態(tài)(見下圖),導(dǎo)致BHEC水溶液的表面張力繼續(xù)降低。
雖然乙醇和正丁醇都能降低BHEC水溶液的表面張力,但兩者又有所不同。與乙醇的分子結(jié)構(gòu)相比,正丁醇分子結(jié)構(gòu)中多了兩個(gè)碳碳鏈,憎水性比乙醇強(qiáng),更傾向于插入BHEC分子間空隙,在BHEC水溶液的表面吸附,使水溶液表面吸附的分子排列得更加致密,導(dǎo)致BHEC水溶液表面張力的降幅更大。正丁醇可使BHEC水溶液的表面張力由53.7 mN/m降至51.9 mN/m,下降了3.7%;而乙醇可使BHEC水溶液的表面張力由53.7 mN/m降至52.7 mN/m,僅下降了1.9%;且隨醇質(zhì)量濃度的增加,BHEC水溶液的表面張力單調(diào)遞減,正丁醇的影響程度大于乙醇。
作為二元醇的乙二醇、1,2-丙二醇能略微增加BHEC水溶液的表面張力,這是由于二元醇分子結(jié)構(gòu)中含有兩個(gè)羥基,與一元醇相比,它的分子極性和親水性均較強(qiáng),這種結(jié)構(gòu)能對(duì)BHEC分子疏水碳?xì)滏溨車摹氨健苯Y(jié)構(gòu)起到破壞作用,從而減小BHEC大分子吸附于其水溶液表面的趨勢,使表面張力增加。另一方面,二元醇分子也能進(jìn)入在液體表面定向排列的BHEC分子間的空隙,使溶液表面吸附的分子達(dá)到緊密排列的狀態(tài),導(dǎo)致表面張力下降。由于以上兩方面的綜合作用,二元醇的加入使BHEC水溶液的表面張力略有增加,乙二醇能使BHEC水溶液的表面張力由53.7 mN/m增至55.1 mN/m,提高了2.6%;1,2-丙二醇能使BHEC水溶液的表面張力由53.7 mN/m增至54.5 mN/m,僅提高了1.5%。與乙二醇相比,1,2-丙二醇分子結(jié)構(gòu)中多了一個(gè)碳碳鏈,所以極性和水溶性略差,相對(duì)較易進(jìn)入液體表層的BHEC分子間空隙中,所以當(dāng)醇的質(zhì)量濃度相同時(shí),BHEC水溶液的表面張力增幅較小。