合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 測量液體表面張力懸滴法介紹
> 水包油型(O/W)和油包水型(W/O)乳液結構與界面穩(wěn)定性
> 表面活性劑是否對斥水性土壤的潤濕性有影響?——結果和討論
> 不同助劑及濃度對IDK120-025型和LU120-015型噴頭霧化效果的影響(一)
> LDH和染料分子自組裝復合多層LB膜
> 有關表面張力儀產(chǎn)品優(yōu)點和參數(shù)說明
> 新型納米材料2-D納米黑卡在油水界面的微觀驅(qū)油機理、界面張力測定(二)
> 塑料產(chǎn)品聚合物表面張力的本質(zhì)與測量方法
> 變壓器油界面張力檢測方法之準確性對比
> 納米氧化鋁可提高BOPP薄膜表面張力,增強薄膜印刷適用性
推薦新聞Info
-
> 不同官能度聚醚酯結構、消泡性能、表面張力測定(三)
> 不同官能度聚醚酯結構、消泡性能、表面張力測定(二)
> 不同官能度聚醚酯結構、消泡性能、表面張力測定(一)
> 工業(yè)廢胺衍生捕收劑的表面張力行為及其在鐵礦反浮選中的應用(三)
> 工業(yè)廢胺衍生捕收劑的表面張力行為及其在鐵礦反浮選中的應用(二)
> 工業(yè)廢胺衍生捕收劑的表面張力行為及其在鐵礦反浮選中的應用(一)
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(一)
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(三)
> ?2,3-雙八氟戊烷基甘油醚-1-硫酸酯鈉的合成路線、表面張力及乳化性能(二)
> 界面張力為22mN/m的柴油-水分離濾紙振動特性研究(三)
液態(tài)金屬界面張力與電極電勢之間的構效關系
來源:Energist 能源學人 瀏覽 948 次 發(fā)布時間:2024-07-19
近年來,鈉離子電池以低廉的成本和規(guī)?;瘍δ艿葍?yōu)勢而備受關注。然而,鈉離子電池中的離子傳輸動力學過程緩慢,進而導致其容量較低、倍率性能差等問題。為了加快離子在電極/電解質(zhì)界面和電極體相內(nèi)的傳輸速率,前期主要圍繞如何優(yōu)化離子溶劑化及離子短程傳輸?shù)奈⒓{體相結構等方面開展了相關研究。為了實現(xiàn)電池快速充放電過程,在開發(fā)高性能電極和電解質(zhì)等關鍵材料基礎上,還應從器件整體角度考量,可將多物理場(電、磁、力、熱、光等)進行耦合,并探究鈉離子存儲及傳輸新機制。
【工作介紹】
近日,大連理工大學胡方圓教授針對鈉離子電池中離子傳輸動力學緩慢問題,提出了微應力泵促進離子流傳輸?shù)男虏呗?,?chuàng)制了電極電勢-應力自調(diào)節(jié)材料,促進了Na+快速傳輸,揭示了電極電勢與液態(tài)金屬界面張力之間的構效關系,闡明了微應力場促進Na+傳輸新機制。為了實時探究鈉離子電池充放電過程,將光纖布拉格光柵傳感器置入軟包電池中,并通過解耦傳感器信號原位探究其充放電機理,該工作從微應力場的角度為改善Na+傳輸動力學過程提供了可借鑒的新思路。該工作以《Micro-stress pump with variation of stress to boost the ion transport for high-performance sodium-ion batteries》為題發(fā)表在能源領域國際知名期刊Energy&Environmental Science上,大連理工大學博士生金鑫為本論文的第一作者,胡方圓教授為通訊作者。
【研究亮點】
在電化學過程中通過液態(tài)金屬模擬心臟泵血過程構筑微應力泵,利用應力場的作用加快離子傳輸速率。結合光纖布拉格光柵傳感器原位監(jiān)測技術,闡明了液態(tài)金屬基電極材料的應力與電化學性能之間的構效關系。構筑出Ah級軟包電池,在1 C電流密度下經(jīng)過500次循環(huán)充放電過程后,其容量保持率為90.2%。
【圖文導讀】
該工作闡述了液態(tài)金屬界面張力與電極電勢之間的關系,并闡明了電極電勢對Na+電化學傳輸速率的影響(圖1)。在還原反應過程中,電極電勢降低,液態(tài)金屬的界面張力加快了Na+向內(nèi)的傳輸速率。在氧化反應過程中,電極電勢增加,液態(tài)金屬表面電荷密度增大,界面張力下降,加快了Na+向外的傳輸速率。在此基礎上,為了加強液態(tài)金屬結構穩(wěn)定性,構筑液態(tài)金屬核殼包覆結構(LMNCs),其自調(diào)節(jié)的界面張力有效改善了Na+傳輸動力學過程。
圖1微應力泵促進Na+傳輸機制圖。
采用光纖布拉格光柵傳感器原位監(jiān)測液態(tài)金屬的形態(tài)變化和應力變化(圖2a),其微應變的變化趨勢如圖2b所示,即在氧化反應過程中,電極電勢增加,界面張力降低,使液態(tài)金屬呈現(xiàn)舒張形態(tài);在還原反應過程中,電極電勢降低,界面張力增加,使液態(tài)金屬呈現(xiàn)收縮形態(tài)。應力變化趨勢與應變相吻合,氧化還原反應驅(qū)動應力變化如圖2c所示。上述結果表明,氧化還原反應會引起液態(tài)金屬的形態(tài)變化。在0.3V、0.6V、0.9V和1.2V的充電過程中,可觀察到材料的膨脹和收縮,如圖2d-2g所示。為了探究界面強度對電化學性能的影響,采用AFM測量其電化學“力-位移”曲線(F-D曲線),以確定材料的相態(tài)(圖2h-k)。F-D曲線表明,材料的液態(tài)界面存在微小的吸引力和粘滯行為,這種納米級的形貌動態(tài)變化為Na+提供了傳輸通道。綜上所述,電極材料在氧化還原反應中,隨著界面張力的降低或增加,呈現(xiàn)出相應的舒張形態(tài)或收縮形態(tài)。
圖2電極材料的應力-電化學測試。(a)光纖布拉格光柵傳感器(FBG)在液態(tài)金屬中的應力-電化學測試示意圖。(b,c)FBG在液態(tài)金屬中的應力響應圖。(d-g)不同電壓下軟包電池中LMNCs的AFM測試圖。(h-k)不同電壓下的LMNCs力-位移曲線圖。
循環(huán)伏安測試如圖3a所示,由0.05 A g-1時LMNCs的恒流充放電曲線可知,半電池的初始充放電容量分別為585.6 mAh g-1、364.3 mAh g-1(圖3b)。在0.5、1、4、8、12、15、20、25、30、35 A g-1時,LMNCs的容量分別為348.7、321.6、289.1、237.6、204.3、184.5、166.2、148.2、132.7、119.1 mAh g-1(圖3c)。一般地,容量貢獻方式是影響離子傳輸動力學的關鍵因素之一。由圖3f可知,在0.2 mV s-1時,LMNCs的電容貢獻比例為73.9%,表明該材料具有較好的離子傳輸動力學特性。為了探究該材料經(jīng)循環(huán)后的動力學穩(wěn)定性,對其進行了循環(huán)穩(wěn)定測試,如圖3e、g所示。由圖可知,LMNCs材料在10 A g-1下,經(jīng)過1800次循環(huán)后容量為125.6 mAh g-1;在15 A g-1下,經(jīng)過1000次循環(huán)后容量為100 mAh g-1,表明其經(jīng)過循環(huán)后,仍可保持較好的離子傳輸動力學特性。
【結論】
該工作提出了微應力泵促進離子流傳輸新策略,創(chuàng)制了電壓響應的應力自調(diào)節(jié)材料,通過微應力場作用加快了離子傳輸速率,改善了鈉離子電池中離子傳輸動力學緩慢問題。此外,將光纖布拉格光柵傳感器內(nèi)置于軟包電池中,原位探究鈉離子傳輸機制。半電池在35 A g-1下容量為119.1 mAh g-1,Ah級軟包電池經(jīng)500次循環(huán)后容量保持率為90.2%,能量密度為317.2 Wh kg-1(基于活性物質(zhì)質(zhì)量)。





