合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 表面張力梯度作用下氣液界面微顆粒運動狀態(tài)研究
> 拉筒法和靜滴法測定連鑄結(jié)晶器保護渣表面張力(一)
> 揭示界面張力在鈣鈦礦晶體生長過程中作用機理
> 不同表面張力溫度系數(shù)對激光焊接熔池流場的影響
> 氟硅表面活性劑(FSS)水溶液表面張力、發(fā)泡力、乳化力測定(二)
> 數(shù)值模擬不同活性水的表面張力構(gòu)建噴霧降塵模型
> 液態(tài)金屬界面張力與電極電勢之間的構(gòu)效關(guān)系
> 農(nóng)藥助劑對70%吡蟲啉水分散粒劑在小麥葉片上附著性能的影響
> 表面張力為25%乙醇溶液作為球磨溶劑,制備MG超細粉替代天然橡膠補強劑
> 基于界面張力弛豫法考察羥基取代烷基苯磺酸鹽的界面擴張流變性質(zhì)(三)
推薦新聞Info
-
> 高速運動的微小水滴撞擊深水液池產(chǎn)生的空腔運動及形成機理(二)
> 高速運動的微小水滴撞擊深水液池產(chǎn)生的空腔運動及形成機理(一)
> 玻璃窗上水滴的運動控制影響因素及模型構(gòu)建
> 勝利油田常規(guī)和親油性石油磺酸鹽組成、色譜、質(zhì)譜、界面張力測定(一)
> 三元復(fù)合體系的界面擴張黏彈性對水驅(qū)后殘余油的乳化作用——結(jié)論
> 三元復(fù)合體系的界面擴張黏彈性對水驅(qū)后殘余油的乳化作用——實驗材料及條件
> 新工藝提升葉黃素和玉米黃素聯(lián)產(chǎn)的塔式萃取效率
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關(guān)系(二)
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關(guān)系(一)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(二)
壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗部分
來源:化工學報 瀏覽 917 次 發(fā)布時間:2024-07-31
目前,隨著科技的不斷發(fā)展與進步,全球變暖現(xiàn)象愈加劇烈。碳捕集、CO2利用與封存(CCUS)是應(yīng)對全球氣候變化的關(guān)鍵技術(shù)之一,可減少70%~82%的碳排放量。其中,CO2驅(qū)油技術(shù)(CO2enhanced oil recovery,CO2-EOR)是重要手段之一,可在提高原油采收率的同時,實現(xiàn)對CO2的封存,常用于三次采油。CO2驅(qū)油技術(shù)分為混相驅(qū)和非混相驅(qū),區(qū)分兩者的關(guān)鍵是最小混相壓力(minimum miscibility pressure,MMP)。當壓力高于MMP時,CO2與原油間的界面消失,界面張力(interfacial tension,IFT)為零。通過對界面張力外推,則可得到CO2-原油體系的MMP。因此,對CO2-不同原油組分界面張力的測定具有重要意義。
原油中主要成分為飽和鏈烴,同時含有少量的環(huán)烷烴與芳香烴。Li等測定了CO2-正構(gòu)烷烴(n-C10~n-C20)的界面張力,并將比容平移后的P-T狀態(tài)方程與密度梯度理論結(jié)合起來對結(jié)果進行了計算,所有體系的平均絕對偏差為6.1%。Mutailipu測量了CO2-正構(gòu)烷烴(n-C11/C13/C14/C20)的界面張力,通過外推獲得MMP,并與實驗值進行比較,結(jié)果較好。商巧燕測定了CO2-正構(gòu)烷烴(n-C9/C11/C13/C15/C17)的界面張力,并擬合了計算CO2-正構(gòu)烷烴界面張力的經(jīng)驗公式,形式簡單,計算的平均相對偏差為5.45%。綜上所述,CO2-正構(gòu)烷烴體系界面張力數(shù)據(jù)已較為全面,但CO2-環(huán)烷烴/芳香烴體系的界面張力數(shù)據(jù)比較缺乏,以往的學者將環(huán)烷烴組分等效為碳數(shù)相近的飽和鏈烴組分,造成了界面張力的預(yù)測誤差。因此對CO2-環(huán)烷烴/芳香烴組分界面張力的測定與預(yù)測十分必要。
本團隊自行設(shè)計高溫高壓界面張力測定裝置,并對CO2-正構(gòu)烷烴界面張力進行了測定。本文對此實驗裝置進行了重新校驗,采用懸滴法對CO2-環(huán)烷烴/芳香烴等體系的界面張力進行測定,測量范圍為40~120℃,0.27~14.70 MPa。探討了壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對界面張力的影響。提出了關(guān)聯(lián)方程,將界面張力的實驗數(shù)據(jù)關(guān)聯(lián)為溫度、壓力、碳原子數(shù)和偏心因子的函數(shù),并對實驗數(shù)據(jù)進行了擬合,得出了方程參數(shù)。
本文提供的實驗數(shù)據(jù)及估算方法為CO2驅(qū)油技術(shù)提供了基礎(chǔ)數(shù)據(jù),可為工程上預(yù)測不同溫度、壓力下CO2-不同結(jié)構(gòu)原油組分的界面張力提供指導(dǎo)。
1實驗部分
1.1實驗試劑
CO2(純度99.999%),天津市東祥特種氣體有限責任公司;環(huán)戊烷(純度96.0%),上海阿拉丁生化科技股份有限公司;環(huán)己烷(純度99.7%),天津市元立化工有限公司;環(huán)辛烷(純度99.0%),凱瑪特(天津)化工科技有限公司;甲苯(純度99.5%),天津市元立化工有限公司;乙苯(純度98.5%),上海阿拉丁生化科技股份有限公司;乙基環(huán)己烷(純度99.0%),上海阿拉丁生化科技股份有限公司;正十一烷(純度99.0%),天津市光復(fù)精細化工研究所。
1.2實驗裝置
懸滴法是測量高溫高壓界面張力的常用方法。根據(jù)其原理本團隊自行設(shè)計的測量裝置可耐壓40 MPa。該裝置主要分為四個部分:氣體注入部分,液體注入部分,高溫高壓可視釜以及圖像的采集處理。詳細裝置內(nèi)容可參見文獻。
1.3實驗流程
首先通入CO2排除釜內(nèi)空氣,壓力達到預(yù)定值時,設(shè)置溫度并加熱。待溫度、壓力穩(wěn)定后,向釜內(nèi)打入油品,在針頭處形成油滴。保持油滴懸停10 min,以達到平衡狀態(tài),開始采集圖像(圖1)。得到的圖像采用軸對稱分析法(ADSA)進行分析,其公式為
式中,γ為界面張力,mN/m;,Δρ為兩相密度差,kg/m3;g為重力加速度,g=9.80 m/s2;de為懸滴最大直徑,m。油滴尺寸如圖1標注,ds為距油滴頂點垂直距離為de處油滴截面直徑,m。1H可由Andreas等建立的函數(shù)表得到。
圖1 ADSA分析法選面示意圖
目前,Δρ的獲得分為兩種方法,一種是測量出平衡時的汽液兩相密度,代入式(1)、式(2)中計算;另一種是由平衡時兩相的純相密度代替。本文采用第二種方法,CO2的密度由NIST查得,平衡時的烷烴密度則采用Mutailipu等提供的方法查得。
1.4裝置校驗
為了測試并驗證裝置和測量方法的可靠性,本研究選用CO2-正十一烷作為測試體系,用該裝置測定了其80℃下的界面張力,并與文獻值進行了比較,結(jié)果如圖2所示。從結(jié)果可以看出,本研究測定的數(shù)據(jù)與文獻數(shù)據(jù)具有很好的一致性。結(jié)果表明,該裝置可行。
壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗部分
壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗結(jié)果與討論