合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 表面張力對液滴形變的影響規(guī)律
> 氣泡法原理的便攜式表面張力儀的缺陷
> 數(shù)值模擬不同活性水的表面張力構(gòu)建噴霧降塵模型
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類活性組分模擬油的動態(tài)界面張力(一)
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領(lǐng)域的應(yīng)用(下)
> SF作為天然表面活性劑制造納米器件,大大改善疏水表面的水潤濕性
> 釕催化劑合成丁炔二醇醚三硅氧烷表面活性劑反應(yīng)條件及表面張力測定(三)
> 有機硅消泡劑作用原理、析出漂油的原因
> 液氫、液氧等低溫推進劑表面張力與內(nèi)角自流現(xiàn)象的關(guān)系
> 不同PQAI溶液靜態(tài)/動態(tài)表面張力變化及對脈動熱管性能影響(二)
推薦新聞Info
-
> 高速運動的微小水滴撞擊深水液池產(chǎn)生的空腔運動及形成機理(二)
> 高速運動的微小水滴撞擊深水液池產(chǎn)生的空腔運動及形成機理(一)
> 玻璃窗上水滴的運動控制影響因素及模型構(gòu)建
> 勝利油田常規(guī)和親油性石油磺酸鹽組成、色譜、質(zhì)譜、界面張力測定(一)
> 三元復(fù)合體系的界面擴張黏彈性對水驅(qū)后殘余油的乳化作用——結(jié)論
> 三元復(fù)合體系的界面擴張黏彈性對水驅(qū)后殘余油的乳化作用——實驗材料及條件
> 新工藝提升葉黃素和玉米黃素聯(lián)產(chǎn)的塔式萃取效率
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關(guān)系(二)
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關(guān)系(一)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(二)
熱力學模型計算MgO-B2O3-SiO2-CaOAl2O3富硼渣表面張力(二)
來源:中國有色金屬學報 瀏覽 752 次 發(fā)布時間:2024-08-13
2 MgO-B2O3-SiO2-CaO-Al2O3體系熔渣表面張力模型的建立
Butler假設(shè)熔體表面相內(nèi)組分與體相內(nèi)組分在熱力學上都達到平衡,推導(dǎo)出表面張力與熱力學性質(zhì)之間的關(guān)系(Butler方程)。本模型基于Butler方程計算熔渣表面張力,熔渣表面相和體相內(nèi)組分通過熔渣結(jié)構(gòu)離子與分子共存理論來確立。本模型主要假設(shè)如下:1)熔渣表面相與體相都遵守熔渣結(jié)構(gòu)離子與分子共存理論,即組元結(jié)構(gòu)都由簡單離子、分子和復(fù)合分子組成,熔渣表面相和體相中簡單離子和分子進行著形成復(fù)合分子的動力學質(zhì)量平衡反應(yīng),且表面相和體相中形成復(fù)合分子的反應(yīng)都遵守質(zhì)量作用定律;2)熔渣表面相和體相中各組元的質(zhì)量作用濃度和熔渣表面張力符合Butler方程:
式中:σipure表示純組元和Al2O3)的表面張力;Ai為純組元i的摩爾表面積,其中L為校正因子,熔渣中設(shè)為1.091;N0為阿伏加德羅常數(shù),Vi為組元i的摩爾體積);R和T分別表示摩爾氣體常數(shù)和絕對溫度;為組元i在表面相或體相的質(zhì)量作用濃度。
根據(jù)共存理論以及上述確定的MgO-B2O3-SiO2-CaO-Al2O3富硼渣體系熔渣中存在的結(jié)構(gòu)單元,定義熔渣中成分分別為。結(jié)構(gòu)組元作用濃度符號表示為:
所有組元總平衡摩爾數(shù)表示為∑ni。各組元作用濃度表達式為:
在1773~1873 K溫度范圍內(nèi),熔渣中各組分之間形成復(fù)雜分子的反應(yīng)式及其達到平衡時的標準Gibbs自由能(以純物質(zhì)為標準態(tài))和質(zhì)量作用濃度的表達式如表1所列,其中所有反應(yīng)的平衡常數(shù)可通過的關(guān)系式進行計算。
MgO-B2O3-SiO2-CaO-Al2O3渣系中質(zhì)量平衡公式如下:
因此,由表1和式(2)~(7)建立計算MgO-B2O3-SiO2-CaO-Al2O3渣系中結(jié)構(gòu)組元和離子對作用濃度Ni的控制方程,其中N6~N31由N1~N5表示出來。在一定溫度下,熔渣成分代入該方程組,采用迭代法計算出所有結(jié)構(gòu)組元和離子對的作用濃度。
表1 MgO-B2O3-SiO2-CaO-Al2O3渣系中復(fù)雜分子的化學反應(yīng)及標準Gibbs自由能和作用濃度的表達式
對于MgO-B2O3-SiO2-CaO-Al2O3體系,依據(jù)Bulter方程,其表面張力可以分別表示為
依據(jù)上述描述,建立模型可計算熔渣表面張力,其中,NiBulk可以通過熔渣成分的摩爾分數(shù)和基于熔渣結(jié)構(gòu)離子與分子共存理論的形成復(fù)合分子的化學平衡計算得出。然后進一步基于共存理論和Butler方程,通過已知量NiSurf、σiPure和Ai,利用方程(8)~(12)可計算出σ和NiSurf值。MgO-B2O3-SiO2-CaO-Al2O3渣系中σiPure和Ai數(shù)據(jù)可見表2和3。
3計算結(jié)果及討論
3.1表面張力的計算值與實測值對比
為了驗證本模型計算結(jié)果的準確性,需將計算結(jié)果與文獻實驗數(shù)據(jù)進行對比。富硼渣相關(guān)體系中,已有B2O3-CaO體系、B2O3-SiO2-CaO體系、B2O3-CaOAl2O3體系、B2O3-SiO2-CaO-Al2O3體系和MgOB2O3-SiO2-CaO-Al2O3體系的表面張力實驗數(shù)據(jù)的報道,相關(guān)體系的組分范圍及溫度范圍如表4所列。本研究中計算了上述體系的表面張力計算值,并與文獻實驗數(shù)據(jù)進行了對比,對比結(jié)果如圖1和表4所示。5個體系文獻實驗結(jié)果與計算結(jié)果總平均相當誤差為9.03%。大多數(shù)熔渣的表面張力實驗誤差一般為±5%~10%,由此可知,本模型計算的熔渣表面張力值與實驗值吻合較好。比較結(jié)果顯示,B2O3-SiO2-CaO體系和B2O3-CaO-Al2O3體系偏差較大,這一方面可能與表面張力高溫測量難度和精度導(dǎo)致的誤差有關(guān),另一方面本模型未考慮熔渣中部分組元會存在飽和現(xiàn)象。由于氧化物純物質(zhì)的熔點偏高,計算溫度下采用的氧化物純組分表面張力數(shù)據(jù)由已有純物質(zhì)的實驗數(shù)據(jù)進行合理的外推得到,這些也可能對模型計算結(jié)果帶來一定的誤差。
表2純組元表面張力與溫度的關(guān)系
表3純組元摩爾體積與溫度的關(guān)系
圖1 MgO-B2O3-SiO2-CaO-Al2O3體系相關(guān)渣系表面張力計算值與文獻實驗數(shù)據(jù)的比較
表4富硼渣相關(guān)實驗渣系組分、溫度及相對平均誤差
熱力學模型計算MgO-B2O3-SiO2-CaOAl2O3富硼渣表面張力(一)