合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 低總濃度下實現(xiàn)"超低界面張力"與"高黏彈性乳狀液"的雙重突破
> 表面張力在調(diào)控液滴-薄膜體系平衡構(gòu)型的作用機(jī)制
> 低界面張力納米流體提高低滲透油藏壓裂滲吸速率和采收率(一)
> 地下水質(zhì)量標(biāo)準(zhǔn)(GB/T 14848-2017)
> 多孔陶瓷的造孔方法|發(fā)泡劑摻量對多孔陶瓷材料性能的影響
> 含氟表面活性劑的合成與應(yīng)用研究
> 含氟聚氨酯超疏水涂層表面性能、化學(xué)穩(wěn)定性、耐摩擦性能研究——結(jié)果與討論、結(jié)論
> 橢球形的小水滴為什么會變成球形?
> 表面張力與涂料質(zhì)量關(guān)系
> 液滴中心液態(tài)區(qū)表面張力法研究PTFE膠粒與NaCl混合液滴圖案形成原理
推薦新聞Info
-
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(二)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 利用超微量天平制備微孔淀粉處理含Cu(II)離子染料廢水
> 不同類型的堿、pH值對孤東油田原油界面張力的影響(下)
> 不同類型的堿、pH值對孤東油田原油界面張力的影響(上)
> 不同結(jié)晶結(jié)構(gòu)的脂肪晶體顆粒界面自組裝行為、儲藏穩(wěn)定性研究
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(三)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(二)
> 新型POSS基雜化泡沫穩(wěn)定劑表面張力測定及對泡沫壓縮性能的影響(一)
> 多功能膜材研發(fā):界面張力已成為整套工藝鏈協(xié)同下動態(tài)演化的核心控制點
超低界面張力復(fù)配表面活性劑用于渤海X油田水驅(qū)后的“挖潛提采”(二)
來源:石油與天然氣化工 瀏覽 897 次 發(fā)布時間:2024-12-10
2結(jié)果與討論
2.1原油族組分碳數(shù)分布
疏水端擴(kuò)散進(jìn)入原油的能力對表面活性劑在油水界面吸附,降低油水界面張力有直接影響。根據(jù)“相似相溶”原理,表面活性劑疏水端擴(kuò)散進(jìn)入原油的能力和其是否與原油中低極性組分(即飽和分和芳香分)具有相似結(jié)構(gòu)密切相關(guān)。因此,測定原油中飽和分和芳香分的碳原子數(shù)分布,對快速篩選驅(qū)油用表面活性劑具有指導(dǎo)意義。
圖1為原油飽和分和芳香分中碳原子數(shù)分布測定結(jié)果。從圖1可知,渤海某油田原油飽和分的碳原子數(shù)主要分布在C12~C21,芳香分的碳原子數(shù)主要分布在C16~C21和C23~C26。因此,在選擇表面活性劑時,表面活性劑的疏水端碳數(shù)應(yīng)保持在C12~C26范圍內(nèi)。
2.2單一表面活性劑降低油水界面張力性能
根據(jù)第2.1節(jié)原油飽和分和芳香分中碳原子數(shù)分布結(jié)果,同時考慮到成本的可行性,選擇了脂肪醇聚氧乙烯醚硫酸鈉(疏水端碳原子數(shù)為12)、十二烷基苯磺酸鈉、十二烷基硫酸鈉、十六烷基二甲基甜菜堿、烷基糖苷APG1214(疏水端碳原子數(shù)為12~14)5種表面活性劑作為渤海某油田原油超低界面張力驅(qū)油劑的復(fù)配原料。
圖2為不同表面活性劑降低油水界面張力的情況。從圖2可知,在5種表面活性劑質(zhì)量分?jǐn)?shù)均為0.2%的情況下,十六烷基二甲基甜菜堿和烷基糖苷APG1214效果最好,分別能將油水界面張力降至0.38 mN/m和0.17 mN/m,低于0.50 mN/m。這是因為原油飽和分和芳香分中C12~C16組分所占比例大,使得這兩種表面活性劑的疏水端碳原子數(shù)與其匹配較好,根據(jù)“相似相溶”原理,這兩種表面活性劑疏水端擴(kuò)散進(jìn)入油相的能力較強(qiáng),因而降低油水界面張力的效果更好。
圖2同時也說明,采用單一表面活性劑將油水界面張力降至超低(10-3mN/m)難度大,因為單一表面活性劑難以在油水界面形成致密的界面膜。因此,在研究超低界面張力驅(qū)油表面活性劑時,除考慮表面活性劑疏水端碳原子數(shù)與原油中飽和分和芳香分碳原子數(shù)分布的匹配性外,還應(yīng)在測定單一表面活性劑降低油水界面效果基礎(chǔ)上,考慮將不同表面活性劑進(jìn)行復(fù)配,利用表面活性劑分子親水端之間的電荷效應(yīng)或疏水端碳原子數(shù)差異引起的疏水端空間位置互補效應(yīng),使表面活性劑分子能在油水界面形成致密的界面膜,從而實現(xiàn)將油水界面張力降至超低。
2.3復(fù)配表面活性劑降低油水界面張力性能
由于十六烷基二甲基甜菜堿和烷基糖苷APG1214降低油水界面張力效果最好,加之烷基糖苷APG1214本身疏水端碳原子數(shù)分布較寬(C12~C14),因此,考慮將二者進(jìn)行復(fù)配,充分利用二者疏水端的空間位置互補效應(yīng),實現(xiàn)油水界面張力的進(jìn)一步降低。
圖3為二者按不同質(zhì)量比復(fù)配后降低油水界面張力的效果。由圖3可知,在相同質(zhì)量分?jǐn)?shù)(0.2%)下,復(fù)配表面活性劑能在10 min內(nèi)將油水界面張力降至超低,并在15 min內(nèi)達(dá)到穩(wěn)定。這不僅說明復(fù)配表面活性劑降低油水界面張力的能力明顯優(yōu)于單一表面活性劑,同時也證實了十六烷基二甲基甜菜堿與烷基糖苷APG1214疏水端之間存在良好空間位置互補效應(yīng)。這種效應(yīng)不僅有利于二者在油水界面快速發(fā)生吸附,并達(dá)到平衡,也有利于二者在油水界面上形成致密的界面膜。隨著十六烷基二甲基甜菜堿和烷基糖苷APG1214質(zhì)量比由2∶1降至1∶2,穩(wěn)定油水界面張力由2.61×10-3降至5.10×10-4mN/m,但當(dāng)二者質(zhì)量比降至1∶3時,穩(wěn)定油水界面張力反而有所升高,為6.10×10-3mN/m。這可能是因為當(dāng)二者質(zhì)量比低于1∶3時,二者疏水端的空間位置互補效應(yīng)減弱所致。圖3表明,十六烷基二甲基甜菜堿和烷基糖苷APG1214的最佳質(zhì)量比為1∶2。
2.4復(fù)配表面活性劑含量對降低油水界面張力的影響
圖4為十六烷基二甲基甜菜堿和烷基糖苷APG1214按質(zhì)量比為1∶2復(fù)配所得表面活性劑,在不同質(zhì)量分?jǐn)?shù)時降低油水界面張力的效果。由圖4可知,隨復(fù)配表面活性劑質(zhì)量分?jǐn)?shù)的增加,油水界面張力呈下降趨勢。當(dāng)復(fù)配表面活性劑質(zhì)量分?jǐn)?shù)≥0.10%時,油水界面張力可降至超低。這說明,在使用該復(fù)配表面活性劑作為驅(qū)油劑時,其質(zhì)量分?jǐn)?shù)不應(yīng)低于0.10%。
超低界面張力復(fù)配表面活性劑用于渤海X油田水驅(qū)后的“挖潛提采”(一)